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Abstract

Roger Coliinson

Many industrial processes involve granular flows. To optimize these processes, it is essential to be able to

simulate the {low accurately. However, due to the complexity of granular flows, there is no generally accepted theory
at present, This paper presents a finite element formulation of an idealized granular material which is assumed to be
viscous-plastic, The flow is modelled within a bin-hopper combination. The governing equations are solved
numerically by the finite element method in space and by the finite difference method in time. The resulting system of
non-linear equations is solved using the Quasi-Newton method. It is shown that the model captures the overall

behaviour of flowing granular materials.

1. INTRODUCTION

The subject of granular flow has significant impact on
many industrial processes such as mineral processing.
However, unitke other coatinbum  mechanics
disciplines, the flow of granular materials is still quite
a mystery. This is becausc granular materials are
neither solid nor fluid, but share some characteristics
of both, and there is no generally accepled theory for
such materials at present.

Over the last few decades, many theoretical and
numerical investigations have been carried out to
study the flow of granular materials. Mosi theoretical
investigations are focused on developing proper
constitutive equations, as these are the equations that
distinguish granular flow from other kinds of material
flows. Through the joint efforts of mathematicians
and other scientists, two types of constifutive models
have been developed, namely the plasticity flow
model (Spencer, 19825 Colling, 1990; Hill and Wy,
1992) and the non-Newionian fluid flow model (Shen
and Hopkins, 1988; Goldshtein and Shapiro, 1995;
Campbell, 1990). A number of attempts have also
been made to construct models with both the plasticity
feature of solids and the viscous behaviour of fluids
{Rombach and Eibl, 1995; Schmnidt and Wu, 1989).
This type of model is referred to as viscous plasticity
model.

In the present work, we siudy the flow of granular
materials using the viscous plasticity model. The
stress tensor is assumeed to consist of a rate-
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dependent part ¢, and a rate independent part o,
thus

C=0y+0, =Hd+Gd, )
where H is the so-called elastic-plastic matrix and its
form depends on the plasticity model used, G is a

viscous matrix, oand dare the co-rotational rates of
stress and deformation rate respectively, i.e.

o 80“
ng—-f-v-VO'-E-ow—wG,
¥

o)
d:§m+v~Vd+dw—~wd, (2)

where d and w are respectively deformation rate and
spin tensor defined by

—i _1 a
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where we have used the so-called index notation with
comma representing differentiation and repeated
indices indicating summation over the index range

and this notation will be used throughout this paper.

The purpose of this paper is to present a finite element
formulation within a proper mathematical framework
for the flow of an idealized granular material whose
constitutive relations can be described by equation

(1).



2. VARIATIONAL STATEMENT OF THE
PROBLEM

Consider the flow of a granular material which
occupies the spatially fixed region £ with a
boundary JQ consisting of three parts: 90, with rigid

constrains, 90, with the prescribed tractions f, and
0L, with rigid constraints in the normal direction

and frictional forces along the tangeatial direction, as
shown in figure 1. Under the viscous plasticity
assumption, the granular flow is governed by the
standard equations of motion, a set of visco-plastic
constitutive equations, and a set of boundary
conditions. Thus the problem considered can be
described by the following boundary value problem.

Problem 2.1 Find v and ¢ such that

Dv.
I .q

Y in L2, 43

Oy =My, dut Gy dr\ in £, {3)

vil]:ﬂ xv?, Tl o zag in L2, (6)

v, =0 on dl,, (N
ﬁ:cjjfzjm_wfi on K2, , (&)

v, =viay =0, f = msgn(v,)fnpw on K2, (9
where Qe R, o0 =oQ, Ukl udk, is the

boundary of £, n denotes the unit vector in the
outward normal direction of 92, v? and Gg are the

initial values of velocity and stress.

In what follows, I*and H'(Q) denote
respectively the square integrable function space and

the usual soholev space with norm ], , namely

jvfdgm},

2

L2y = {v:

Ve do e 12l = -
H (Q)—-{l e L (Q}.L!aﬁﬂ =0} and vi”‘ilagf —0}.

To solve Problem 2.1 numerically, we need to derive
a corresponding variational boundary value problem.
For this purpose we firstly find the weak form of (4)
by making the sum of residuals ‘orthogonal’ to ali

functions w; in the test space H l(Q},
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Figure 1: Types of boundary conditions

va-\
flo.+x, -p—D-;ijdQ =0, (10)
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Integrating {10) by parts and using Green’s theorem in
the plane, leads to the following weak form

Dy,
J —W‘,i,fdfj +ijj-—,0———5t—-wj 0+ J‘fjwjdsz{)
Q a0
(1D

where Q' denotes a2, UaQ;.

Therefore, Problem 2.1 has now been converted to
the following variational boundary value problem.

Problem 2.2 Find v; EH‘(Q) such that, with
relation (5) and condition (6), equations (10) are

satisfied for all w; eHY(Q).

3. FORMULATION OF THE METHOD

To solve Problem 2.2 numerically, we pose the
problem in the N-dimensional subspace of Hl(Q).

The variable ¢ is fixed and the space variables are
discretized. Thus

N
=wlh =3 Bad, (), (12)
f=1
N
=20 maj (e (13)
k=1

Substituting (12) inte (11) vields

[_fpk,fo‘u
0

N
>\
ffj(fbkds}ﬁjk =0.
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o Dt !

{14)



Al interior points and points on &€, , we can choose
w =9, and wo, =0 or w, =0 and w, =¢, for all
k, namely

if n=k and m= _]

1
= 15
Brw = {0 otherwise (15)

Thus we have for k=1,..., N-N, and j=1,2

J(qﬁ,\,cg-}-pi) }1 jx ¢, d2+ Jf}%ds

o
(16)

where N, denotes the number of nodes on &2, and
K.

At points on o0 +» we need to choose wy properly
such that it is in the function space H'(€). Let
n= (’?1,”2) be the outward unit normal at a point on
Ky,

must be chosen as foliows: .

then to satisfy the condition that wn, =0, w;

wp =y fr, Wy =-mfy

In other woeds, the B, in (14) must be chosen such

that
ny, if n=k
ﬁln= P '
O Faxk
-y If n=k
T
O ifnzk

Substituting {17) inlo (14} yields

Dy; -
j 40+ PP -DT—AJ'¢1\- jaR2= J‘fs%d&
0 a0

(18)

(k=N-Ny+1,...N).

The nexl step is 1o approximate v by vh Substituting

{13) into (16) yiclds

+ [0, Jx 9, dQ2- stebde— (19)
Q
which gives,
dai
i [Mk! a } At +{Mr:f<i 0 jl[ﬂ]
1 0 My day 6 Moy | az
di
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(20)

_ |:7’1k+P1k-| -0
Fag P |

My = _}‘pt;bkt;bgdﬂ,
&

where

My = _}-va@,i‘ﬁkdg »
Q

e = [ 91,0,40,
Q
Pip = ij¢de+ jfjﬁﬁkds.
o X

Similarly, by substitating (13} into (18} , we have

da;
T a
Z{{Mﬂnl Myn; ] ditz +H{M gy Mo {aj
f @
[(ﬁk + pye )+ (g + szc)nz]- 21

Equations (20) and (21) can now be written in the
general form
da

Me—tM a=r+p.
di

(22}

At a typical instant of time (", equation (22) can be

approximated by

n+l

M v p g™ ey o ptti o, (23)

Ar £

where

Mjlqbka :m .

As from equation (1),

it _ o on nt+] n+l n
ot =0 +{H ! At Gy (dh —dl )+ Tyae),

(24)
we have
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The formula for €} is similar o that for K .

Now, substituting (25) into (23} yields

n+l n
M D P g +Ka”“£\r+c(a"“ -—cz")
Af

+rt = p" =0, (26)

which can be wriiten as

\P{anﬂ ) = —[ﬂ-i-M;H "i“KnHAI'i—C}CInH
At
-3-{-2_4——& C)a" +p AL (27)
i3

The Quasi-Newton method is then used to solve
system (27), namely

i+1an+i :ian+i+iA—ilP(fan+} )’ (28)
where
FP LYV LYeYCl
aan+E u'”izju"'—l 7

. & _n+l
In the present calculation, we choose “a""' =a" and

approximate ‘A by A(a}l

a -
aw=da

4. NUMERICAL RESULTS

In this section, we test the numerical algorithm
described in section 3 by simulating the {low of
granular materiais through hoppers for a specific kind
of constitutive model.

In the general constitutive equation (5), the co-
rotational rate of stress < consists of a rate-dependent

part ¢, and a rate-independent part G5 . We assume

in the present example that Oy is linearly
propartional 1o the shear rate simitar to the deviatoric
part of a Newtonian fluid, namely

& BT ij;m‘ dr_;
with

G = 2#(5ir5js _%&'jaﬂ) :

where 1 is the viscosity of material and § denotes

the delta function. The rate independent part is
assumed to be caused by the elastic and plastic
deformation of materials, The elastic plastic matrix H
in (5) can be derived using two different kinds of
theories, namely the plastic flow rule theory and the
double-shearing theory. The example presented here
is based on the non-associated plastic flow rule theory
with a Mohr-Coulomb yield function,

Figure 2 shows the geometry of the hopper and the
finite element mesh adopted for the caiculation, The
granular material has the following properties

Density p=1600kg/m"
elastic modulus E=50MPa
Poisson’s ratio v=0.3

angle of internal friction P=30°

wall fricticn coefficient L, =04

viscous congtant 1i=0,001secMPa/m’

Figures 3 and 4 show the vartation of wall pressures
with time during the discharge of material from the
hopper. It is noted that the pressure at the cutlet area
decreases with time and the position of the peak
pressure on the hopper wall moves slowly from the
outlet to the transition point. This behaviour in
general agrees with many experiments reported.
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Figure 2 Finite Element Mesh
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Figure 3. Pressure Distributicn on Vertical Wall

5. CONCLUSION

A finite element formulation has been presented for
simulating the flow of an idealized viscous-plastic
material. A numerical exampie has shown that the
numerical method presented can be used to predict the
distribution of pressure on hopper walls.
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